CSL862 Midterm Exam
Advanced Topics in Operating Systems
Sem 1 2017-18
18 September 2017
Answer all 6 questions Max. Marks:
25

1. On the duality of OS structures: What is the dual of condition variable “wait()”
operation in a message-oriented system? What is the dual of condition variable
“signal()” operation in a message-oriented system? What are the semantics of this
“dual of condition variables” in the message-oriented system: Hoare or Mesa?
Explain briefly. [5]

2. Light-weight contexts : Consider the following code (taken from the paper) for an
event-driven server with session isolation.

Algorithm 2 Event-driven server with session isolation

I: function SERVE_REQUEST(retlwc, client)
2. loop

3: if would_block(client) then

4 IwSwitch(retlwc, 0);

5: else if finished(client) then

6: IwSwitch(retlwe, 1);

7 else

8 serve(client)

9: function MAIN

10: descriptors = { accept_ descriptor }

11: file2lwec_map = { accept_descriptor => root }

12 loop

13: next = descriptors.ready()

14: if next = accept_descriptor then

15: fd = accept(next)

16: descriptors.insert(fd)

17: spees ={ ... } > Share fd descriptor only
18: new,caller,arg = lwCreate(specs, ...)

19: if caller = -1 then > context created
20: file2lwc_map[fd] = new

21: else

22: serve_request(root, fd)

23 else

24: lwe = file2lwe_map[next]

25: from, done = IwSwitch(lwc, ...)

26: if done = 1 then

27: close(next);close(from)

28: descriptors.remove(next)

29: file2lwc_map.unset(next)

Assume that there are two clients and after the server is started, they both initiate a
connection with the server. These clients keep making requests to the server alternately
and never finish. l.e., the request pattern to the server from the clients is:

Client1Initiate — Client2Initiate — Client1Request — Client2Request — Client1Request —
Client2Request — Client1Request — Client2Request — ...

Show the exact sequence of execution of the statements in the code above for this pattern of

client requests. For each statement, mention the IwC that executes that statement. [4]

3. Huge page management :
a. Why do some applications speed up by using huge pages? Why do some
applications slow down by using huge pages? State the nature of application that
would result in that behaviour and briefly explain the reason. [2]

b. Fragmentation

1.0

¢+ Redis using huge page o
»—e Redis not using h
edis not using huge page i

Fragmentation index

0 20 10 60 30 100
time (sec)

Figure |: Fragmentation index in Linux when running a
Redis server, with Linux using (and not using) huge pages.
The System has 24 GB memory. Redis uses 13 GB, other
processes use 5 GB, and system has 6 GB free memory.

Why does fragmentation increase for Redis when using huge pages? [1.5]
Why does fragmentation decrease when using regular pages? [1.5]

4. Crash Refinement:

Consider the following specification of the mknod operation:

def mknod(self, parent, name, mtime, mode):
Name must not exist in parent.
if self._childmap[(parent, name)] > @:
return -errno.EEXIST

The new ino must be valid & not already exist.
ino = InoT()

assertion(ino > @)
assertion(Not(self._parentmap[ino] > 0))

with self.transaction():
Update the directory structure.
self._childmap[(parent, name)] = ino
self._parentmap[ino] = parent
Initialize inode metadata.
self._mtimemap[ino] = mtime
self._modemap[ino] = mode
self._sizemap[ino] @

return ino

Now consider the following definition of crash refinement without recovery:
! !
Vso, S1, @, b.. Jby. (SU ~To,I1 81) = (SU e P .5‘1)
! !
where s, = fo(so, @, bg) and s7 = f1(s1, x, by).
Explain what is s0, s1, 10, I1, x, b0, b1. Why is there an existential quantifier (exists) over b0

while there is a universal quantifier (for-all) over s0, s1, x, and b1? What would be potential
values of b0 for the specification of mknod given above? [4]

5. CertiKOS

The paper mentions that one of the limitations of the current verification approach is that it
assumes strong sequential consistency for all atomic instructions. What is sequential
consistency, and where is this assumption used? [2]

Verification usually involves a layered approach, where-in properties of the lower layer are
proved in isolation, and then those properties are used in the higher layers. Give one
example of such a layered approach in CertiKOS. [2]

6. RPCs over RDMA

a. How are coroutines used to improve RPC throughput? Why coroutines? [1]

b. Why is the the “validate” phase necessary in FaSST’s transaction protocol? [1.5]

c. Why is the the “validate” phase sufficient in FaSST’s transaction protocol? l.e., what
property does it guarantee? [1.5]

